Rationale

The periodic table gives us a structured organisation of all known chemical elements to help us make sense of their physical and chemical properties. The periodic table and the model of atomic structure has been developed over time as new evidence has been found. We can use our knowledge of the structure of the atom to help us explain patterns in the arrangement of the elements in the periodic table. This is a fundamental topic in Chemistry.

Diagrams	Keywords	Definitions
	Metals Non-metals	Shiny element that is a good conductor of heat and electricity. An element that is a poor conductor of heat and electricity.
	Group 1 (Alkali metals) Group 7 (Halogens) Group 0 (Noble Gases)	The first column in the periodic table. Elements at the bottom are the most reactive. The seventh column in the periodic table. Elements at the top are the most reactive. The final column in the periodic table. Elements are all unreactive.
${ }^{3}$ Word Equation Example: $\xrightarrow{\text { Hydrogen }+ \text { Chlorine }} \rightarrow$ Hydrogen Chloride Reactants Products Symbol Equation Example: $\underbrace{\mathrm{H}_{2}+\mathrm{Cl}_{2}}_{\text {Reactants }} \rightarrow \underbrace{2 \mathrm{HCl}}_{\text {Products }}$	Reactants Products	The particles that are reacting together (on the left of the equation). The particles that are being produced (on the right of the equation).
	Democritus (~400 BC) Dalton (1803) Thompson (1897) Plum Pudding Model Rutherford (1909) Bohr (1913) Chadwick (1932)	"Everything is made up of atoms." "The atom is a solid sphere." "The atom is a ball of positive charge with negative electrons embedded within." "There is a tiny positively charged nucleus at the centre where most of the mass is concentrated. A 'cloud' of negative electrons surround the nucleus." "Electrons orbit at set distances." "There are uncharged particles called neutrons within the nucleus."

Rationale

The periodic table gives us a structured organisation of all known chemical elements to help us make sense of their physical and chemical properties. The periodic table and the model of atomic structure has been developed over time as new evidence has been found. We can use our knowledge of the structure of the atom to help us explain patterns in the arrangement of the elements in the periodic table. This is a fundamental topic in Chemistry.

Diagrams	Keywords	Definitions
	Metals Non-metals	Shiny element that is a good conductor of heat and electricity. An element that is a poor conductor of heat and electricity.
	Group 1 (Alkali metals) Group 7 (Halogens) Group 0 (Noble Gases)	The first column in the periodic table. Elements at the bottom are the most reactive. The seventh column in the periodic table. Elements at the top are the most reactive. The final column in the periodic table. Elements are all unreactive.
${ }^{3}$ Word Equation Example: $\xrightarrow{\text { Hydrogen }+ \text { Chlorine }} \rightarrow$ Hydrogen Chloride Reactants Products Symbol Equation Example: $\underbrace{\mathrm{H}_{2}+\mathrm{Cl}_{2}}_{\text {Reactants }} \rightarrow \underbrace{2 \mathrm{HCl}}_{\text {Products }}$	Reactants Products	The particles that are reacting together (on the left of the equation). The particles that are being produced (on the right of the equation).
	Democritus (~400 BC) Dalton (1803) Thompson (1897) Plum Pudding Model Rutherford (1909) Bohr (1913) Chadwick (1932)	"Everything is made up of atoms." "The atom is a solid sphere." "The atom is a ball of positive charge with negative electrons embedded within." "There is a tiny positively charged nucleus at the centre where most of the mass is concentrated. A 'cloud' of negative electrons surround the nucleus." "Electrons orbit at set distances." "There are uncharged particles called neutrons within the nucleus."

