Y9 Atomic Structure and the Periodic Table

Y9 Atomic Structure and The Periodic Table

Atomic Model Development

- New experimental evidence and technology may lead to scientific models being changed.
- Before the electron was discovered, atoms were thought to be tiny solid spheres that could not be divided.
- When JJ Thomson discovered the electron, he modified the atomic model to the Plum Pudding Model.
- The Plum Pudding model suggested the atom to be a solid positive sphere with negative electrons embedded throughout it.
- Rutherford's Alpha Scattering Experiment led to the conclusion that the mass of an atom is concentrated at the centre (nucleus) and that the nucleus was positively charged.
- The Nuclear Atomic model replaced the Plum Pudding Model.
- Neils Bohr adapted the nuclear model to suggest that electrons were held at specific distances from the nucleus, creating the Planetoid Model.

Neutron

 Further experiments identified neutrons as a particle found within the nucleus.

Electron Structure

- Electrons in an atom occupy the lowest available energy level (shell).
- The electronic structure of an atom can be represented by numbers or by a diagram, as shown on the right (Sodium).
- This shows that 2 electrons fill the lowest energy level
 8 the second, and one in the third energy level.

2, 8, 1

Separating Techniques

Mixtures are easily separated by the following physical processes which do not involve chemical reactions, and no new substance is made.

Distillation – separating liquids from liquids based on different boiling points. This can be simple distillation (ink and water) or fractional distillation (crude oil)

Chromatography – separating coloured substances (e.g. food colourings) based on molecular size.

Y9 Atomic Structure and The Periodic Table

1	2				T	he	Pei	riod	dic	Tal	ble	3	4	5	6	7	0
				Key			1 H hydrogen 1										4 He helium 2
7 Li ^{lithium} 3	9 Be beryllium 4		relativ ato	name (proton	ic mass mbol) numbei							11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygen 8	19 F fluorine 9	20 Ne neon 10
23 Na ^{sodium} 11	24 Mg ^{magnesium} 12					_						27 Al aluminium 13	28 Si silicon 14	31 P phosphorus 15	32 S ^{sulfur} 16	35.5 CI chlorine 17	40 Ar ^{argon} 18
39 K potassium	40 Ca	45 Sc scandium	48 Ti titanium	51 V vanadium	52 Cr	55 Mn manganese	56 Fe	59 Co cobalt	59 Ni	63.5 Cu	65 Zn zinc	70 Ga gallium	73 Ge germanium	75 As arsenic	79 Se selenium	80 Br bromine	84 Kr krypton
85 Rb	88 Sr	89 Y	91 Zr	93 Nb	96 Mo	[98] Tc	101 Ru	103 Rh	28 106 Pd	108 Ag	30 112 Cd	31 115 In	32 119 Sn	122 Sb	34 128 Te	35 127 I	131 Xe
37 133 Cs	38 137 Ba	39 139 La*	40 178 Hf	41 181 Ta	42 184 W	43 186 Re	44 190 Os	45 192 Ir	46 195 Pt	47 197 Au	48 201 Hg	49 204 TI	50 207 Pb	51 209 Bi	52 [209] Po	53 [210] At	54 [222] Rn
caesium 55	^{barium} 56	lanthanum 57	^{hafnium} 72	tantalum 73	tungsten 74	rhenium 75	^{osmium} 76	iridium 77	platinum 78	^{gold} 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
[223] Fr francium 87	[226] Ra ^{radium} 88	[227] Ac* actinium 89	[261] Rf rutherfordium 104	[262] Db ^{dubnium} 105	[266] Sg seaborgium 106	[264] Bh ^{bohrium} 107	[277] Hs ^{hassium} 108	[268] Mt ^{meitnerium} 109	[271] Ds ^{darmstadtium} 110	[272] Rg roentgenium 111	Eleme	ents with repor	ted but	numbers not fully	s 112 – 1 authenti	116 have cated	been

* The Lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted. Relative atomic masses for Cu and Cl have not been rounded to the nearest whole number.

The Periodic Table consists of every known element.

- The modern periodic table is arranged according to increasing **atomic number**.
- It is called Periodic Table because similar properties occur at regular intervals (periodically).
- Columns of elements are called **groups** and have the same number of electrons on their outer shell.
- · Groups of elements have similar properties.
- Rows of elements are called **periods** and have the same number of

electron shells.

Development of the Periodic Table

- Before protons, electrons, and neutrons were discovered, scientists tried to organize the known elements.
- In the early Periodic Tables elements were largely arranged in atomic weight but the tables were largely incomplete (many elements were still undiscovered).
- Some elements were placed in the wrong groups.
- Dimitri Mendeleev overcame some of the problems by leaving gaps where he though undiscovered elements might lay. He also changed the order of some of the elements.

1.01	11		IV	V	VI	VII			
6.94	9.01	B 10.8	12.0	N 14.0	16.0	F 19.0			
Na 23.0	Mg 24.3	AI 27.0	Si 28.1	P 31.0	S 321	CI 35.5		VIII	
K 39.1	Ca 40.1		Ti 47.9	V 50.9	Cr 52.0	Mn 54.9	Fe 55.9	Co 58.9	N 58
Cu 63.5	Zn 65.4			As 74.9	Se 79.0	Br 79.9			
Rb 85.5	Sr 87.6	Y 88.9	Zr 91.2	Nb 92.9	Mo 95.9		Ru 101	Rh 103	Pc 10
Ag 108	Cd	In 115	Sn 119	Sb 122	Te 128	1 127			
Ce 133	Ba 137	La 139		Ta 181	W 184	Se seretak	Os 194	lr 192	P 19
Au 197	Hg 201	Ti 204	Pb 207	Bi 209					
	jan tai		Th 232		U 238		in second	A.S	Sec.

Elements that Mendeleev predicted were discovered and filled the gaps. When isotopes were discovered, they explained why the order of elements was not strictly according to atomic weight but atomic mass.

Y9 Atomic Structure and The Periodic Table

The Periodic Table Properties

· GROUP 1 elements are the Alkali Metals

- Lithium
- Sodium
- Potassium

Ar

- Rubidium
- Cesium
- They have 1 electron on the outer shell, making them all highly
- Francium Reactivity increases going down the group.
- GROUP 7 elements are called the Halogens and are nonmetals.
- They have seven electrons on their outer shell.

reactive.

- Reactivity decreases going down the group.
- Relative molecular mass, melting and boiling points increase going the group.
- A more reactive halogen can displace a less reactive halogen from an aqueous solution of its salt.
 - GROUP 0 are called the Noble Gases and a full outer electron shell.
 - They are largely unreactive and do not easily form molecules.
 - They have 8 electrons on their outer shell, except Helium that has 2.
 - The boiling points increase with increasing relative atomic mass (going down the group).

The transition metals are the central block of metals on the Period Table, and all have similar properties, which are different to Group 1 metals.
They do not show group trends like other groups.

Physical Properties

- Good conductors of heat and
 electricity
- Malleable (can be hammered) and ductile (can be deformed without losing their toughness)
- Very high melting points (except Mercury)
- Usually hard and tough
- High densities

Chemical Properties

- Less reactive than Alkali metals.
- Form coloured ions of different charges.
- Can be very unreactive (e.g. silver, gold, and platinum).
- Many can be used as catalysts.

F Fluorine Chlorine Br Bromine I Iodine

Astatine

Y9 Energy Resources

Required Practical 2: Insulation Material Thickness method: 1: Wrap 2 layers of newspaper around small beaker and use a rubber band to keep it in place. **Do not** cover the bottom.

2: Boil 80cm³ of water and place into the beaker.

3: Add cardboard lid with hole for thermometer and record starting temperature.

4: Start the timer.

5: Record temperature every 3 minutes for 15 minutes.

6: Repeat steps 2-6 adding 2 layers of newspaper each time to a maximum of 8 layers.

7: Plot graph Temperature (°C) against time

00:00

Piece of card

Layer of newspape

(mins).

Y9 Energy Resources

Power Power is the rate energy is transferred. It is measured in

WATTS (W). $Power(W) = \frac{Energy transferred(J)}{time(s)}$

 $Power(W) = \frac{Work\,done(J)}{time(s)}$

Required Practical 1

Insulation Material method:

1: Put small beaker in a large beaker.

2: Boil 80cm³ water and place in small beaker.

- 3: Use a cardboard lid with a hole for the thermometer and record the starting temperature.
- 4: Start the timer.
- 5: Record temperature every 3 minutes for 15 minutes.
- 6: Repeat steps 2-6, placing different insulation materials between beakers.

7: Plot graph Temperature (°C) against time (mins).

Efficiency The ratio of the useful energy (or power) output from a system to its total energy (or power) input.

 $efficiency = \frac{useful\ energy\ output}{total\ energy\ input}$

 $efficiency = \frac{useful \ power \ output}{total \ power \ input}$

Renewable energy resources

Advantages:

- Renewable
- No CO₂ gas released
- Not reliant upon Earth's

natural resources

Disadvantages:

- Destroy habitats
- Many are weather dependent (wind, solar)
- Expensive to build and run

Non-renewable energy resources

Advantages:

- High energy stored
- Readily available

Disadvantages:

- Releases greenhouse
- gases (fossil fuels only)
- Finite (will run out)
- Makes Radioactive waste
 - (nuclear only)

KS4 Biology: Transport Systems

Diffusion is the movement of a fluid (a gas or a liquid) from a high to a low concentration along a concentration gradient.

Osmosis is the movement of water from a high to a low water concentration along a concentration gradient.

Active transport is the movement of a substance from a low to a high concentration. It requires energy.

	、		、
	Transport in plants The transport of water is		Keywords
÷	transpiration. It occurs in		Diffusion I
i	xylem vessels (non-living).		Osmosis
4	Thick Walls Stiffened With Lignin		Active transport
i			Concentration
	The transport of sugar solution is		gradient
	translocation. This occurs in	0	Xylem I
•	phloem vessels (living tissue).		Transpiration
1		0	Phloem
\ 	Transport in humans		Translocation
Ì	The heart pumps blood to the		Atrium
ł	lungs and to the rest of the body.		Ventricle
4	A double circulatory system		Double circulatory
i	<pre>keeps oxygenated and deoxygenated blood senarate</pre>		system
	Arteries take blood away from the heart.		Artery
ļ	veins take it to the heart.	0	Vein
/		\ _0	Capillary