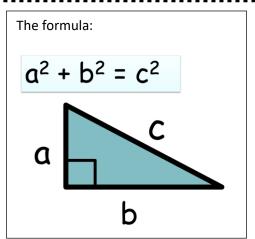
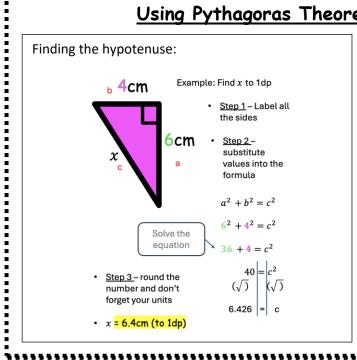
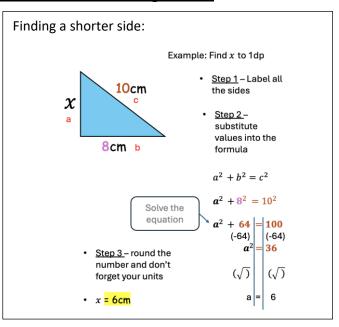

Pythagoras Theorem


Component Knowledge

- Identify the hypotenuse in a right-angled triangle.
- Use substitution in formula.
- Solve an equation by rearranging


Key Vocabulary


Hypotenuse	The longest side in a right-angled triangle
Opposite	The side facing the given angle in a right-angled triangle
Adjacent	The side next to the given angle in a right-angled triangle
Square number	The result when you multiply a number by itself.

Using Pythagoras Theorem to find missing sides

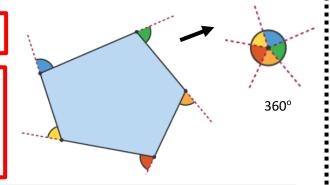
Online Clips U385, U828

Angles in Polygons

Component Knowledge

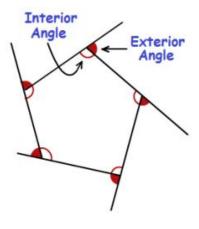
- Recognise and name different polygons
- Understand the difference between regular and irregular polygons
- Calculate and use the sum of interior angles
- Know that the sum of any exterior angles of any polygon is 360°
- Know that the interior + exterior angle is 180°

Key Vocabulary


Interior angles	The angles inside the shape
Exterior angles	The angles between the side of a shape and a line extended from the adjacent
	side
Sum	Total – to add all the angles together
Polygon	A 2D closed shape made with straight lines
Regular	When all the sides are the same length and all angles are the same
Irregular	Shape with sides of different lengths and angles of different sizes

Exterior angles

The sum of exterior angles in any polygon is 360°


The size of each exterior angle in a regular polygon is **360°** ÷ number of sides

This can be rearranged to number of sides = 360 ÷ angle

Interior and Exterior angles

Interior + exterior angle = 180°



Example 1 – Calculate the interior and exterior angle of a regular pentagon.

Exterior angle

 $= 360 \div 5 = 72^{\circ}$

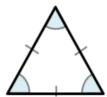
Interior angle = $180 - 72 = 108^{\circ}$

Exterior angle = 360 ÷ number of sides

Number of sides = $360 \div 20 = 18$

= 18 sides

Interior angles in regular polygons

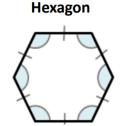

Sum of interior angles = $(n - 2) \times 180$

Where n is the number of sides.

Each interior angle on a regular shape =

Total interior angles ÷ number of sides

Triangle

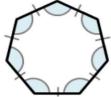


	J	+	
_			

Square

	^
/	\sim

Pentagon


Number of	3
sides	
Sum of interior	180°
angles	
Size of each	60°
interior angle	

Number of	4
sides	
Sum of interior	360°
angles	
Size of each	90°
interior angle	

Number of	5
sides	
Sum of interior	540°
angles	
Size of each	108°
interior angle	

Number of	6
sides	
Sum of interior	720°
angles	
Size of each	120°
interior angle	

Heptagon

P	J
Q	
	7

900°

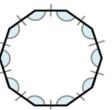
128.6°

(1dp)

Number of sides Sum of

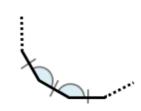
interior angles Size of each

interior angle

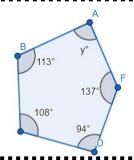

octubon
X

Octagon

<u> </u>	
Number of	8
sides	
Sum of interior	1080°
angles	
Size of each	1350


interior angle

Number of	10
sides	
Sum of interior	1440°
angles	
Size of each	144°
interior angle	


n Sided Shape

Number	n
of sides	
Number	(n- 2)x 180°
of	, ,
interior	
angles	
Size of	
each	$(n-2) \times 180^{\circ}$
interior	n
angle	"

Irregular polygons

Example -Find the value of y 5 sides, irregular polygon Sum of interior angles = $(5 - 2) \times 180 = 540^{\circ}$ 113 + 108 + 137 + 94 = 452 540 - 452 = 88 $x = 88^{\circ}$

Online clips

U628, U732, U329, U427

Algebraic

Vocabulary

Component Knowledge

- Understand the difference between the various algebraic words
- Understand how each previous word builds on to the next

Key Vocabulary

Variable	A quantity that can take on many values denoted by a symbol or a letter
Term	Is a single variable or number or variables and numbers multiplied together.
Expression	A group of numbers, letters and operational symbols, e.g. 2x + 3y -8
Equation	A number statement with an equals sign (=). Expressions on either side of the equals sign are of equal value, e.g. $a + 14 = 20$ or $2(x + 12) = 44$ or $x + 5 = 2x + 3$
Formula	A special type of equation that shows the relationship between different variables. They tend to describe real-world situations. Plural is formulae.
Identity	An equation where both sides are identical whatever the value of the variable

A **variable** is a symbol (often a letter) that is used to represent an unknown.

E.g. x or y or a etc.

Variables can also have exponents (can be raised to a certain power.

E.g. x²

A coefficient is the value that is before a variable. It tells us how many lots of the variable there is.

E.g. $x + x + x + x + x + x = 5 \times x = 5x$

The coefficient here is 5.

An algebraic term is either a single number or a variable.

e.g. '3' or 'x' or 'h'

A term can also be a number and a variable multiplied together.

e.g. 2a or 6y or 4xy

When 2 or more algebraic terms are added (or subtracted) they form an expression.

Formula/Formulae

A formula is a special type of equation that shows the relationship between different substituted variables. Formulas are often used in geometry to find area and volume.

Area of triangle = $(base \times height) \div 2$ Area of rectangle = $(12.5 \times hours worked) + 25 = cost of job$

Algebraic identities use the ' \equiv ' symbol. It is like an equal's sign, but it means identical to. No matter what the value of the variable this will always be true. e.g. 2x = x + x

An algebraic expression is a single term or a set of terms that are combined using addition (+), subtraction (-), multiplication (x) and division (÷)

Examples

3x

$$2x + 3y$$
 $2 - 5y$

2x + 3y - 5

An expression that contains two terms is called a binomial.

Equations are mathematical expressions which contain one or more variables and an equals sign.

$$3x - 5 = 7$$

$$\frac{4(x-2)}{5} = 8$$
 $x^2 = 9$ $2x^2 - 3x - 5 = 0$

$$x^2 = 9$$

$$2x^2 - 3x - 5 = 0$$

We can solve an equation to find the value of the variable(s).

 ${\color{red} \nearrow}$ Example Solve 4x+3=23

$$4x+3=23$$

$$-3$$
 -3

$$4x = 20$$

$$x = 5$$

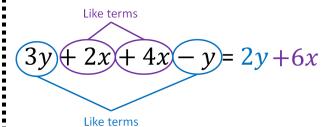
Online clips

M813, M830

Collecting

Like terms

Component Knowledge


- Recognise terms in algebra
- Use of positive and negative directed numbers

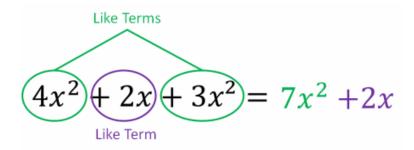
Key Vocabulary

Variable	A Variable is a symbol for a number we don't know yet. It is usually a letter like x or y
Term	A Term is either a single number or a variable (x) , or numbers and variables multiplied together $(5y)$.
Expression	An Expression is a group of terms (the terms are separated by + or $-$ signs) (eg, $5y + 6x - 8y$)
Simplify	reducing the expression/fraction/problem in a simpler form.

Collecting like terms: We collect like terms to simplify an expression. We look at terms which

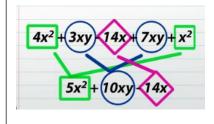
share the same variable

In this example:


We collect all the x variables : 2x+4x = 6x

AND

Collect all the y variables: variables: 3y-y=2y


Collecting like terms - example 2

When collecting like terms, it is important to find the same terms and combine them to simplify the algebraic expression. We need to be able to recognise that x is different to x^2

Handy Hint:

It helps if you can visually see the different terms before you collect them. Using a different coloured pen, highlighter or shape works!

Online Clips

M795, M531, M949

<u>Simplifying</u>

Expressions

- Law of indices
- Collecting like terms
- Recognise Algebraic terms and expressions

Key Vocabulary

Terms	In Algebra a term is either a single number or variable
Expression	Numbers, symbols and operators grouped together to show the value of
	something
Simplify	Reducing the expression/fraction to a simpler form.

Simplifying Terms - Multiplying:

Algebraic terms can be multiplied to give a simplified term. We focus on the number first, and then the variable $(x \ or \ y)$, often using laws of indices.

Important – we always write terms in alphabetical order

Example	Answer
$2x \times 3 =$	6 <i>x</i>
$4a \times 5b =$	20 <i>ab</i>
$y^2 \times y^3 =$	yxyxyxyxy
	$= y^5$
2 <i>ab</i> x 8cd =	2 x 8
	x a x b x c x d
	= 16abcd
$a^5 b^3 \times a^4 bc^2 =$	$a^9b^4c^2$

Remember, any number to the power 0 is always 1

Simplifying Terms - Dividing:

Algebraic terms can be divided to give a simplified term. We focus on the number first, and then the variable $(x \ or \ y)$, often using laws of indices.

Important – we should always write the division as a fraction,

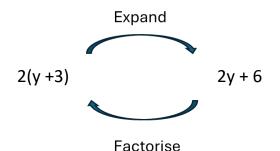
e.g.
$$12a \div 6 = \frac{12a}{6}$$

Example	Answer
$\frac{12a}{} =$	2 <i>a</i>
6	
18 <i>x</i>	3x
$\frac{1}{24} =$	4
$y^5 \div y^3 =$	$y \times y \times y \times y \times y$
	$y \times y \times y$
	$=y^2$
$15a^4 \div 3a^2 =$	$15 \times a \times a \times a \times a$
	$3 \times a \times a$
	$=5a^2$
$a^3 \div a^3 =$	1

Online Clips

M795, M531, M120

Expanding single brackets



Component Knowledge

- Multiply terms together to remove a bracket from an expression
- Collect like terms together when expanding multiple single brackets

Key Vocabulary

Expression	Numbers, symbols and operators grouped together that show the value of something
Expand	Remove the brackets by multiplying terms together
Simplify	Collect like terms together
Term	Either a single number or variable or numbers and variables multiplied together

Expanding is the opposite of factorising. When we expand, we are multiplying terms together to remove the brackets.

Examples

Expand and simplify where appropriate

2)
$$2(5+a)+3(2+a) = 10+2a+6+3a$$

= $5a+16$
Note – collect like terms to simplify

To expand, we multiply all the terms inside the bracket by the term in front of the bracket

One use of brackets in maths in maths is to group items together, another is to give information about the order of operations.

Here is a rectangle.

Its perimeter is:

$$(x+8)+(x-3)+(x+8)+(x-3)$$

Here the brackets are used to group the terms so that the expressions for the sides are clear.

The perimeter can also be written as: 2(x+8) + 2(x-3)

Here brackets are needed to preserve that the whole expressions for the sides are doubled to find the perimeter of a rectangle.

Online clips

U179, U105

Expanding Double

Brackets

Component Knowledge

- To use algebraic notation when multiplying terms.
- To be able to expand double brackets and simplify where necessary.
- Use identity notation correctly.


Key Vocabulary

Expand	Multiplying out a bracket.
Term	Either a single number or variable, or the product of several numbers or
	variables.
Collecting like terms	Simplifying an expression by grouping the same type of terms together.
Identity	An equality that relates one variable to another. It will be equal for ALL
	values of the variable, unlike an equation which gives a single solution.

Expanding double brackets

Expanding double brackets is long multiplication using algebraic terms as well as numerical values. There are 2 common ways of completing this.

Example 1 -Expand (x + 4)(x + 6)

We multiply all terms together (this can be known as FOIL method):

$$x \times x = +x^2$$

$$x \times 6 = +6x$$

$$4 \times x = +4x$$

$$4 \times 6 = +24$$

$$(x + 4)(x + 6) \equiv +x^2 + 6x + 4x + 24$$

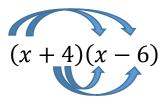
We now collect like terms:

$$\equiv +x^2 + 10x + 24$$

Example 1 -Expand
$$(x + 4)(x + 6)$$

We can also use an area model (also known as the grid method).

X	х	+4
х	+x ²	+4x
+6	+6x	+24


We have still multiplied all the terms together, like the previous method, but they remain in the grid. We can see all 4 terms in the expanded expression in the grid:

$$(+x^2+6x+4x+24)$$
.

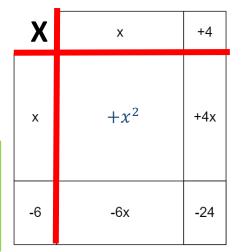
We now collect like terms:

$$(x+4)(x+6) \equiv +x^2 + 10x + 24$$

Example 2 -Expand (x + 4)(x - 6)

We multiply all terms together

$$x \times x = +x^2$$


$$x \times -6 = -6x$$

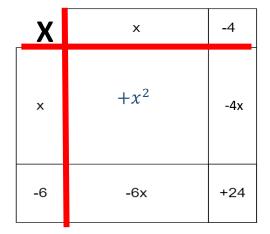
$$4 \times x = +4x$$

$$4 \times -6 = -24$$

when multiplying and adding with negatives!

Note: be careful

We can see all 4 terms in the expanded expression in the grid:


Example 2 -Expand (x + 4)(x - 6)

$$+x^2 - 6x + 4x - 24$$

We now collect like terms:

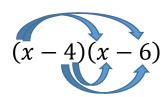
$$(x+4)(x-6) \equiv +x^2 - 2x - 24$$

Example 3 -Expand (x-4)(x-6)

We can see all 4 terms in the expanded expression in the grid:

$$+x^2 - 6x - 4x + 24$$

We now collect like terms:


$$(x-4)(x-6) \equiv +x^2 - 10x + 24$$

We now collect like terms:

$$\equiv +x^2 - 2x - 24$$

 $(x + 4)(x + 6) \equiv +x^2 - 6x + 4x - 24$

Example 3 -Expand (x-4)(x-6)

$$x \times x = +x^2$$

$$x \times -6 = -6x$$

$$-4 \times x = -4x$$

$$-4 \times -6 = +24$$

$$(x-4)(x-6) \equiv +x^2 - 6x - 4x + 24$$

We now collect like terms:

$$\equiv +x^2 - 10x + 24$$

Online clip

Substitution

Component Knowledge

 To substitute positive and negative numbers into expressions with one, or more, variables.

Key Vocabulary

Expression	A maths sentence that includes a minimum of 2 variables, including an algebraic term and at least one operation.
Term	Either a single number or variable, or the product of several numbers or variables.
Substitute	To exchange an unknown variable for a number in an expression/equation/formula.

Substitution-formula

For example: The time in minutes to cook a chicken is given by the formula:

Time = 40 minutes per kilogram plus 20 minutes

Find how long it takes to cook a 5kg chicken.

Here we substitute 5kg into the formula.

So, Time= 40 x 5 +20 = 220 minutes

The formula for speed is shown:

$$Speed = \frac{Distance}{Time}$$

Find the average speed when travelling 150 miles in 4 hours.

Here we substitute Distance = 150 and Time = 4 into the formula. $Speed=rac{150}{4}=37.5mph$

Substitution-expressions

Example 1

$$f = p + 4$$
. find
the value of f
when $p = 6$.

We substitute 6 for p in the formula.

$$f = (6) + 4$$

f = 10

Example 2

$$f = 2p + 4$$
. find
the value of f
when $p = -6$.

We substitute -6 for p in the formula.

$$f = 2(-6) + 4$$

f = -8

Example 3

$$f = t^2$$
. find the value of f when $t = -6$.

We substitute - 6 for t in the formula.

$$f = (-6)^2$$

f = 36

Example 4

$$f = \frac{t^2}{5y}$$
. find the value of f when $t = -6$, $y = 4.2$

We substitute -6 for t and 4.2 for y in the formula.

$$f = \frac{(-6)^2}{5(2.4)}$$

$$f = \frac{36}{12}$$

When substitute negative numbers, we must put brackets around them to ensure the correct order of operations occurs. This very important when we use calculators. (We can also do this with positive numbers)

From example 4. $-6^2 = -(6)^2 = -36$ is not equal to $(-6)^2 = -6 \times -6 = 36$.

Online clips: M417, M327, M208, M979

Factorise Linear

expressions

Component Knowledge

- Factorise an expression with a numerical common factor.
- Factorise an expression with a variable (letter) as the common factor

Key Vocabulary

Factor	A number or quantity that when multiplied with another produces a given number or expression.
Factorise	The reverse of expanding. Factorising is writing an expression as a product of terms by 'taking out' a common factor.
Expression	A mathematical statement written using symbols, numbers or letters.

Factorising Examples

- Factorising is the opposite of expanding a bracket.
- Find the largest common factors of all terms and divide by these.
- The factors are put in front of the bracket.

Example 1

Example 2

Factorise fully:

raccorrac rany

12y + 4

What is common to

both? 4

4 goes on the outside of the bracket

Check your answer by expanding the bracket.

Factorise fully:

 $18a^2-4a$

What is common to

both? 2 and a

2 *a* goes on the outside of the bracket **2** *a* **(9** *a* **- 2)**

Check your answer by expanding the bracket.

Online clips

U365

<u>Solving linear</u>

equations

Component Knowledge

- To be able to solve one-step equations.
- To be able to solve two-step equations.
- To be able to solve three-step equations
- To be able to form and solve equations

Key Vocabulary

Operation	Common operations are addition, subtraction, multiplication and division.
Inverse	The opposite operation of another function.
Equation	a mathematical statement that shows that two mathematical expressions are equal
Solve	To find the solution

One- step equations

To solve a one-step equation, you need to do the inverse operation.

5x = 30 x = 6

÷5

_

 $\begin{vmatrix} x+5 \\ x \end{vmatrix} = \begin{vmatrix} 9 \\ 4 \end{vmatrix}$

The inverse of multiplying is

dividing.

We divide 30 by 5.

The inverse of subtracting is

addition.

We add 3 to 7.

The inverse of addition is

subtraction.

We subtract 4 from 9.

$$\begin{array}{c|c} x \ 3 \end{array} \qquad \begin{array}{c|c} \frac{x}{2} = 3 \\ x = 6 \end{array}$$

The inverse of dividing is

multiplying.

We multiply 2 by 3.

Two- step equations

To solve a two-step equation, we need to complete 2 inverse calculations in a specific order.

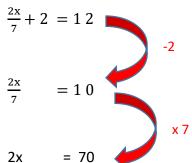
$$6x + 3 = 32$$
 $6x = 30$
 $x = 5$

The inverse of adding 3 is subtracting 3

The inverse of multiplying by 6 is dividing by 6

$$\begin{vmatrix} x-5 \\ 3 \end{vmatrix} = \begin{vmatrix} 4 \\ x-5 \end{vmatrix}$$

$$x - 5 = \begin{vmatrix} 12 \\ 4 \end{vmatrix}$$


$$x = \begin{vmatrix} 14 \\ 4 \end{vmatrix}$$

The inverse of dividing by 3 is multiplying by 3

The inverse of subtracting 5 is adding 5

Three - step equations

To solve a three – step equation, we need to complete 3 inverse calculations in a specific order.

= 35

The inverse of adding 2 is subtracting 2

The inverse of dividing by 7 is multiplying by The inverse of multiplying by 2 is dividing by

8x

= 16

= 48

= 6

The inverse of subtracting 9 is adding 9

The inverse of dividing by 3 is multiplying by 3

x 3

The inverse of multiplying by 8 is dividing by 8.

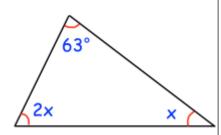
Forming and solving equations

I think of a number, multiply it by 3 and add 5. The answer is 29. What number did I think of?

Write the unknown number as a letter like x

Multiply x by 3 Add 5 to get to get 3x 3x + 5

Put equal to 29 to get an equation to solve


3x + 5 = 29

Solve

3x + 5 = 29

-63

Form and solve an equation to find the size of the angle labelled x.

1st step: form an equation

 $x + 2x + 63^{\circ}$ $= 180^{\circ}$ $3x + 63^{\circ}$

2nd step: solve the equation

 $3x + 63^{\circ}$ $= 180^{\circ}$

3x = 117

 $= 180^{\circ}$

 $= 39^{\circ}$

3rd step: show your final answer

Angle $x = 39^{\circ}$

Online clips

U755, U325, U599

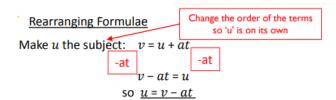
Changing the subject

Component Knowledge

- Use inverse operations to change the subject of a formula
- Rearranging simple and harder formula
- Use the order of operations to rearrange

Key Vocabulary

Rearrange	Change the order of			
Inverse	The opposite (adding is the inverse of subtracting)			
Operation	A mathematical process that produces an output (+, -, x, ÷)			
Term	A part of an equation (2, a and 2a are all terms)			
Formula	A fact or rule that relates two or more quantities			
Subject	The beginning of a formula/equation			


Rearrange to make r the subject of the formula:

$$Q = \frac{2r - 7}{3} \qquad X3$$

$$3Q = 2r - 7$$

$$3Q + 7 = 2r$$

$$\frac{3Q+7}{2} = r$$

Make m the subject: I = mv - mu

If the letter appears twice you will need to factorise

$$I = m(v - u)$$

$$I \div (v - u) = m$$

$$m = \frac{I}{v - u}$$

e.g. make c the subject of the formula

$$m = 5(c - 1)$$

There are 2 options here:

Method 1: expand the bracket first

expand
$$m = 5(c - 1)$$

$$m = 5c - 5$$

$$+5$$

$$m + 5 = 5c$$

$$\div 5$$

$$\frac{m + 5}{5} = c$$

$$+5$$

Method 2: divide by the coefficient first

Tip – examiners tell schools that method 1 usually has a higher success rate in an exam than method 2 does! When the subject appears more than once in a formula, collect like terms together and factorise using the subject as the factor

Online clips

U675, U181

Finding and using

the nth term

Component Knowledge

- Find the common difference between terms in a sequence
- Using the common difference to find the
- Using the nth term to find terms in a sequence

Key Vocabulary

Sequence	A list of numbers or objects in a special order		
Linear	A sequence where each term is added, or subtracted, by the same amount each		
	time.		
Pattern	Objects or numbers that are arranged following a rule or rules		
Nth Term	A formula that enables us to find any term in a sequence		
Term	In algebra, a term is either a single number or variable, or numbers and variables multiplied together.		

How to find common differences & the nth term of a linear sequence

The nth term is the general rule for a sequence. We can use the nth term to then calculate any term in the sequence.

Here is a sequence: 5, 8, 11, 14, ...

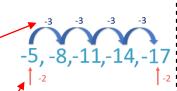
1. Find the difference between the numbers.

2. Calculate how you get from the times table to the original sequence.

5, 8, 11, 14

3, 6, 9, 12, ...

A difference of +3 means we need to look at the +3 times table.


> We can also write this as $t_n = 3n + 2$

<u>Decreasing sequences – follow the same</u> steps but your nth term will be negative

A difference of -3 means we need to look at the -3 times table.

-3n:

Calculate how you get from the times table to the original sequence

-3n -2

Using the nth term to create a sequence

Write the first five terms of the sequence 3n+4.

n represents the position in the sequence. The first term in the sequence is when n=1, the second term in the sequence is when n=2, and so on.

To find the terms, **substitute** n for the position number:

- when $n = 1, 3n + 4 = 3 \times 1 + 4 = 3 + 4 = 7$
- when $n=2, 3n+4=3\times 2+4=6+4=10$
- when n = 3, $3n + 4 = 3 \times 3 + 4 = 9 + 4 = 13$
- when n = 4, $3n + 4 = 3 \times 4 + 4 = 12 + 4 = 16$
- when $n=5, 3n+4=3\times 5+4=15+4=19$

The first five terms of the sequence: 3n+4 are $7,10,13,16,19,\ldots$

Using the nth term to find if a number is in a sequence

Is the number 14 in the sequence 4n + 2?

$$\begin{vmatrix} 4n+2 \\ -2 \\ 4n \\ \div 4 \\ n = \begin{vmatrix} 14 \\ -2 \\ 12 \\ \div 4 \\ n = \begin{vmatrix} 3 \end{vmatrix}$$

If you get a decimal here, then the term isn't in the sequence

Yes, 14 is the 3rd term in the sequence.

Online clips

M381, M241, M166, M991

Pie charts

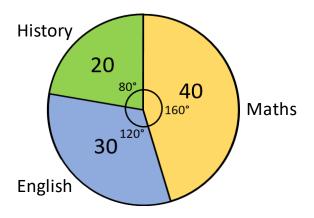
Component Knowledge

- Calculate angles in a pie chart
- Draw a pie chart from a table
- Interpret pie charts using fractions
- Interpret pie charts using angles

Key Vocabulary

Angle	The amount of turn between 2 lines.		
Pie chart	A chart that displays data proportionally.		
Protractor	Equipment used to measure and draw angles		

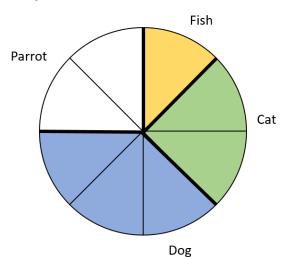
Drawing pie charts


How many degrees for one person?

$$\frac{360}{90} = 4^{\circ}$$

 $360 \div total = degrees$ for one person. In this example one person is 4° .

Subject	Number of Students	Calculation	Angle
Maths	40	40 × 4°	160°
English	30	30 × 4°	120°
History	20	20 × 4°	80°
Total	90		360°


Multiply number of students by 4° to get the angle.

Draw the angles onto the pie chart. Label each part with what it is (subject in this example) and how many it represents (40 for Maths in this example).

Interpret pie charts (fractions)

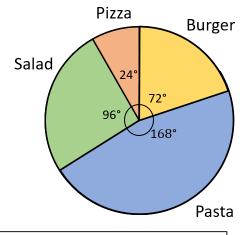
A class of **32 students** were surveyed to find their **favourite pet**. The **pie chart** shows the total answers. How popular was each animal?

The pie chart is split into 8 pieces, so each sector is worth $\frac{1}{8}$ of 32 = 4

Fish:
$$\frac{1}{8}$$
 of 32 = 4

Cat:
$$\frac{2}{8}$$
 of 32 = 8

Dog:
$$\frac{3}{8}$$
 of 32 = 12


Parrot:
$$\frac{2}{8}$$
 of 32 = 8

Check that the totals add up to the original total in the question. (4 + 8 + 12 + 8 = 32)

Interpret pie charts (angles)

150 students were surveyed about their favourite food.

Favourite Food	Angle	Calculation	Frequency
Burger	72°	$\frac{72}{360} \times 150$	30
Pasta	168°	$\frac{168}{360} \times 150$	70
Salad	96°	$\frac{96}{360} \times 150$	40
Pizza	24°	$\frac{24}{360} \times 150$	10

To calculate the frequency from a pie chart when you are given the angle, you do the opposite of what you do to calculate the angle.

Angle \div 360 \times total frequency

Online clips

M574, M165