Trigonometry

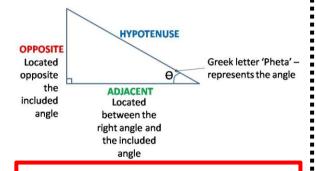
Component Knowledge

- Recall the three trigonometric ratios
- Correctly label the sides of a right-angled triangle with Opp, Adj, Hyp
- Identify the correct trigonometric ratios to use.
- Use the correct trigonometric ratio to find the missing side or angle.
- To identify exact values for key angles using trigonometric ratios.

Key Vocabulary

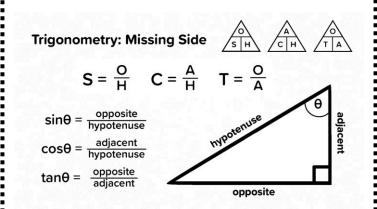
Trigonometry (trig)	Trigonometry helps us find angles and lengths in right-angled triangles.
Trigonometric ratios	There are three trigonometric ratios, depending on the position of the unknown
	sides and angles.
Hypotenuse side (Hyp)	The length of the longest side of a right-angled triangle.
Opposite side (Opp)	The length of the side opposite the given angle.
Adjacent side (Adj)	The length of the side next to the given angle and right-angle.
Sine ratio (sin)	Is used to describe the relationship between the given angle, Opposite side and
	Hypotenuse
Cosine ratio (cos)	Is used to describe the relationship between the given angle, Adjacent side and
	Hypotenuse
Tangent ratio (tan)	Ratio used to describe the relationship between the given angle, Opposite side
	and Adjacent side.

Labelling the sides



Hypotenuse will **always** be opposite the 90° angle. The Opposite and Adjacent will change depending on where the given angle (Θ) is on the diagram.

Trig ratios



Finding the missing side

- numerator

Remember to show your full calculator answer too, should you have a decimal, and then round to get your final answer.

To find the length of b

Step 1: Label each side

Step 2: Choose the correct formula Since we know the hypotenuse and need to find the adjacent side, we can use cos

Step 3: Substitute the values into the formula

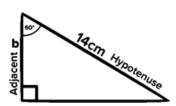
$$\cos(60) = \frac{b}{14}$$

Step 4: Rearrange to find b

$$b = \cos(60) \times 14$$

h = 7

SOH CAH TOA



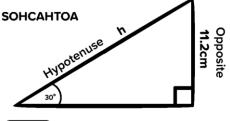
Finding the missing side- denominator

Step 1 Label each side

Step 2 Choose the correct formula

Since we know the opposite side and need to find the hypotenuse, we can use sin

$$\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}}$$



Step 3 Substitute the values into the formula

$$\sin(30) = \frac{11.2}{h}$$

Step 4 Rearrange to find h

$$n = \frac{11.2}{\sin(30)}$$

Here we have multiplied both sides by h and then divided both sides by sin (30)

Finding the missing side- angle

To type sin⁻¹ into your calc, press SHIFT and then the SIN button.

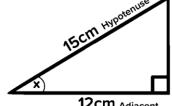
To type cos⁻¹ into your calc, press SHIFT and then the COS button.

To type tan⁻¹ into your calc, press SHIFT and then the TAN button.

Step 2 Choose the correct formula

$$C \mid H$$
 $\cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}}$

Calculate the value of the missing angle x Give your answer to 1 decimal place.



12cm Adjacent

Step 3 Substitute and solve

$$\cos(x) = \frac{12}{15}$$

$$x = \cos^{-1}\left(\frac{12}{15}\right)$$

= 36.8698.

1 decimal place

Exact trigonometric values- LEARN BY HEART!

	0°	30°	45°	60°	90°
$\sin(heta)$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan(\theta)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undefined

Online clips

U605, U283, U545, U627

Component Knowledge

Compare products with different quantities and

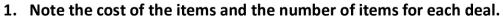
Key Vocabulary

Best Buy	Comparing products to see which is the best value for money
Value	A measure of somethings worth in money
Multiple	A number that may be divided into another number a certain amount of times
	with no remainder
Direct Proportion	When one value is increased or decreased a related value will increase or
	decrease at a constant rate
Unitary	Relating something to a unit or units
Method	A particular procedure for accomplishing or approaching something
Deal	An agreement made when trading goods or services

Best Buys

Best buys problems involve assessing which item is the best value for money.

In order to compare deals:



- 2. Calculate the price for an equivalent number of items for each deal. For the unitary method, this is the price of a single item. For the common multiples method, this is the price of a common number of items.
- 3. Compare the prices of the equivalent quantities.

The Unitary Method

Boxes of tissues come in 3 sizes:

A) 24 Tissues = £7.99

B) 20 Tissues = £7.33

C) 15 Tissues = £5.65

Which box is the best value for money?

Step 1 – Find the price per tissue for each box

Box A = £7.99 \div 24

= £0.333 or 33.3p/tissue

Box B = £7.33 \div 20

= £0.367 or 36.7p/tissue

Box $C = £5.65 \div 15$

= £0.377 or 37.7 p/tissue

Questions like this can typically be solved by first finding the amount per unit (e.g. weight per cm; price per tissue). This is called the 'unitary method'

Step 2 – Identify which box is cheapest per tissue

The best value for money is Box A as it is the cheapest per tissue.

Online clip

M681

Finding a Comparative Amount

Sometimes it is better to compare reasonable amounts rather than using the unitary method.

Decide which product is the best value for money.

·Radox Handwash 500ml bottles on offer at 3 for 2 Price for each £1.90

300ml bottles on offer at buy one get one free

Price for each £1.88

 $3 \times 500 = 1500$ ml

Cost $2 \times £1.90 = £3.80$

 $100ml \cos t £3.80 \div 15 = £0.25$

 $2 \times 300 = 600$ ml Cost £1.88

 $100ml \cos t £1.88 \div 6 = £0.31$

Pie charts

Component Knowledge

- Calculate angles in a pie chart
- Draw a pie chart from a table
- Interpret pie charts using fractions
- Interpret pie charts using angles

Key Vocabulary

Angle	The amount of turn between 2 lines.
Pie chart	A chart that displays data proportionally.
Protractor	Equipment used to measure and draw angles

Drawing pie charts

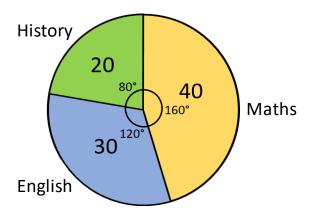
How many degrees for one person?

$$\frac{360}{90} = 4^{\circ}$$

 $360 \div total = degrees$ for one person. In this example one person is 4° .

Subject	Number of Students	Calculation	Angle
Maths	40	40 × 4°	160°
English	30	30 × 4°	120°
History	20	20 × 4°	80°
Total	90		360°

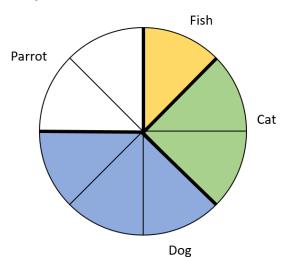
Multiply number of students by 4° to get the angle.



Draw the angles onto the pie chart. Label each part with what it is (subject in this example) and how many it represents (40 for Maths in this example).

Interpret pie charts (fractions)

A class of **32 students** were surveyed to find their **favourite pet**. The **pie chart** shows the total answers. How popular was each animal?



The pie chart is split into 8 pieces, so each sector is worth $\frac{1}{8}$ of 32 = 4

Fish:
$$\frac{1}{8}$$
 of 32 = 4

Cat:
$$\frac{2}{8}$$
 of 32 = 8

Dog:
$$\frac{3}{8}$$
 of 32 = 12

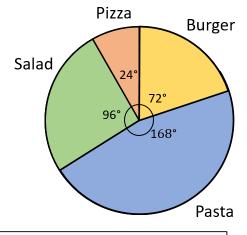
Parrot:
$$\frac{2}{8}$$
 of 32 = 8

Check that the totals add up to the original total in the question. (4 + 8 + 12 + 8 = 32)

Interpret pie charts (angles)

150 students were surveyed about their favourite food.

Favourite Food	Angle	Calculation	Frequency
Burger	72°	$\frac{72}{360} \times 150$	30
Pasta	168°	$\frac{168}{360} \times 150$	70
Salad	96°	$\frac{96}{360} \times 150$	40
Pizza	24°	$\frac{24}{360} \times 150$	10



To calculate the frequency from a pie chart when you are given the angle, you do the opposite of what you do to calculate the angle.

Angle \div 360 \times total frequency

Online clips

M574, M165

Index Laws

Component Knowledge

- To be able to apply the different index laws
- To be able to calculate negative indices
- To be able to calculate fractional indices

Key Vocabulary

		
Index notation	A way of writing numbers or letters that have been multiplied by themselves a	
	number of times	
Square number	The product of a number multiplied by itself	
Cube number	The product of a number multiplied by itself three times.	
Root	The inverse of a square number is a square root. The inverse of a cube number	
	is a cube root	
Reciprocal	1 divided by the number	

Multiplication law

When multiplying the terms, we add the powers together

$$3^7 \times 3^5 = 3^{7+5} = 3^{12}$$

$$x^3 \times x^4 = x^{3+4} = x^7$$

The base number does not change

Division law

When dividing the terms, we subtract the powers.

$$2^7 \div 2^3 = 2^{7-3} = 2^4$$

Divides can only be written as fractions

$$\frac{5^{11}}{5^2} = 5^{11-2} = 5^9$$

$$\frac{y^5}{y^{-1}} = y^{5--1} = y^6$$

Subtracting a negative is the same as adding

Brackets law

$$(4^5)^3 = 4^{5 \times 3} = 4^{15}$$

When raising to the power we multiply the powers together

$$(2x^4)^3 = 2^3 \times x^{4 \times 3} = 8x^{12}$$

Facts

$$p = p^1$$

$$y^0 = 1$$
 $456^0 = 1$
Anythin power equal to

Anything to the power of zero is equal to 1

Index Laws – You can only use index laws when the base number is the same.

$$2^3 \times 4^5 \neq 8^{15}$$

Negative indices

A negative power performs the reciprocal

$$x^{-a} = \frac{1}{x^a}$$

Example

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

Fractional

The denominator of a fractional power acts as a "root. The numerator of a fractional power acts as a normal power.

General rule

$$x^{\frac{a}{b}} = \left(\sqrt[b]{x}\right)^a$$

$$64^{\frac{2}{3}} = (\sqrt[3]{64})^2 = 4^2 = 16$$

Changing the base

Write

 $(4)^3$ as a power of 2

$$4 = 2^2$$
, so

$$(4)^3 = (2^2)^3 = 2^6$$

Example

Given that

$$3 \times \sqrt{27} = 3^n$$

Find the value of n

$$27 = 3^{3}$$

$$3 \times \sqrt{3^{3}}$$

$$3^{1} \times (3^{3})^{\frac{1}{2}}$$
A square root can be changed to the power of $\frac{1}{2}$

$$3^{1} \times 3^{\frac{3}{2}} = 3^{1+\frac{3}{2}} = 3^{\frac{5}{2}}$$

Online clips

M135, M608, M150, M120 X647, X783

Factors, multiples

& primes

Component Knowledge

- Identify factors and multiples
- Identify a prime number
- Complete a prime factor tree and write the number in index form
- Calculate HCF and LCM of 2 values using an appropriate method.

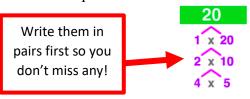
Key Vocabulary

Factor	Numbers that we can multiply together to get another number		
Multiple	The result of multiplying a number by an integer		
Prime	A number that only has two factors 1 and itself		
Highest common factor	The greatest number that is a factor of 2 (or more) other numbers		
Lowest common multiple	The smallest positive number that is a multiple of two or more numbers		
Product	The answer when two or more values are multiplied together		
Factorisation	Writing a number as a product of two or more smaller numbers		
Integer	A whole number		

Multiples: The result of multiplying a number by an integer. It is the times table of a number.

Multiples of 4: 4, 8, 12, 16,20 ... Multiples of 5: 5, 10, 15, 20, 25.... Multiples are the list of times tables

Factors: A number that divides exactly into another number without a remainder. It is often helpful to write them in pairs.



Factors of 20 = 1, 2, 4, 5, 10, 20

HCF & LCM

Highest common factor

Find the HCF of 12 and 20

Factors of 12	Factors of 20	
1 and 12	1 and 20	4 is the highest
2 and 6	2 and 10	factor of both
3 and 4	4 and 5	numbers

Lowest common multiple

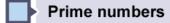
Find the lowest common multiple of 4 & 6

Multiples of 4: 4, 8, 12, 16, 20, 24, 28, 32 ... Multiples of 6: 6, 12, 18, 24, 30, 36 ...

12 is the lowest number that appears in both times tables.

Prime Numbers

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

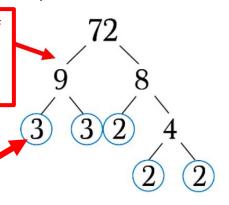


Prime Factorisation

Write 72 as a product of its prime factors

We need to find pairs of numbers that multiply to give the number above.

> When you get a prime number circle it.



 $72 = 2 \times 2 \times 2 \times 3 \times 3$

$$72 = 2^3 \times 3^2$$

If a number is repeated we write it as a power

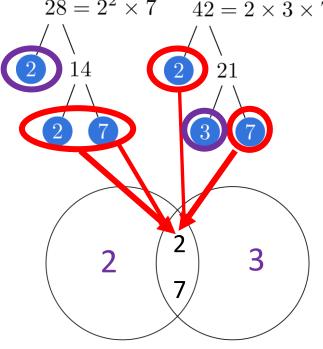
HCF & LCM using prime factors

Find the HCF and LCM of 28 and 42

First start by finding the Prime factors of 28 and 42

 $28 = 2^2 \times 7$ $42 = 2 \times 3 \times 7$

Both trees have a 2 and 7 so those numbers go in the middle of the Venn diagram as they are shared.



The remaining numbers in the tree go in outside circles of the Venn

HCF – the highest common factor is found by multiplying the centre shared part of the Venn diagram

$$HCF = 2 \times 7 = 14$$

LCM – the lowest common multiple is found by multiplying all the numbers in the Venn diagram

$$LCM = 2 \times 2 \times 3 \times 7 = 84$$

Online clips

Speed,

Distance &

<u>Time</u>

Component Knowledge

- Calculate speed given distance and time (including fractional time).
- Use the correct formula to calculate speed, distance & time.

Key Vocabulary

Speed	A measure of how fast something is happening
Distance	A measure of how far it is from one place to another
Time	A measure of how long something takes to happen
Units	A quantity used as a standard measurement
Convert	To change something from one form to another
Average	A calculated central value of a set of numbers
Metric	A standard unit of measure using metres, kilograms and seconds
Imperial	A unit of measure developed in England. E.g. miles, pounds, gallons etc

Speed =
$$\frac{\text{Distance}}{\text{Time}}$$

Distance = Speed
$$x$$
 Time

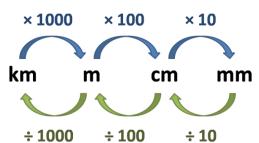
Time =
$$\frac{\text{Distance}}{\text{Speed}}$$

Units of speed include: m/s (metres per second), mph (miles per hour), Km/h (kilometres per hour).

Units of distance include: m (metres), km (kilometres) miles.

Units of time include: s (seconds), min (minutes), h (hours).

<u>Useful conversions</u>



5 miles ≈ 8 kilometres



Example 1

Jim travels 45 miles in 3 hours.

What was his average speed in mph?

$$Speed = \frac{Distance}{Time} = \frac{45}{3}$$
$$= 15mph$$

Example 2

Jess travels 45 miles in 1 hour 30 mins.

What was her average speed in mph?

$$Speed = \frac{Distance}{Time} = \frac{45}{1.5}$$

1 hour 30 mins = $1 \frac{30}{60} h$

=30mph

Example 3

Jim drives at 40 mph for 3 hours.

How far did he travel?

$$Distance = Speed \times Time$$

$$Distance = 40 \times 3$$

Example 4

For 15 minutes Sally ran at

an average speed of 20 km/h

$$Distance = Speed \times Time$$

$$Distance = 20 \times 0.25$$

Note: there are different units of time so we convert mins to hours.

15 mins =
$$\frac{15}{60}$$
 = 025 h

Example 5

A train travels 300 miles at 60 mph.

How long did this take?

$$Time = \frac{Distance}{Speed} = \frac{300}{60}$$

$$= 5 hours$$

Example 5

A runner travels 3 km at 5 m/s.

How long did they take?

$$Time = \frac{Distance}{Speed} = \frac{3000}{5}$$

Note: there are different units of distance so we convert km to m.

<u>= 600seconds</u>

= 10 minutes

Note: this is not a sensible unit. We convert 600s to mins.

600s = 10 mins

Multi-Part Journeys

Julie drove 45km from Bath to Bristol.

She then drove 68km from Bristol to Cardiff.

Julie's average speed from Bath to Bristol was 50km/h

Julie took 105 minutes to drive from Bristol to Cardiff.

Creating a table can help solve problems with multi-part journeys.

Work out Julie's average speed for her total drive from Bath to Cardiff.

We cannot just find the second speed and take the mean of the 2 values because the distances are different.

	Speed	Distance	Time
Bath to Bristol	50 km/h	45 km	0.9 h
Bristol to Cardiff	We do not need this	68 km	105 mins (1.75 h)
Total	42.6 km/h	113 km	2.65 h ←

Use the formula to find the missing value so we can find the total distance and total time by adding them (we must convert the time to a decimal).

Average Speed =
$$\frac{Total\ Distance}{Total\ Time} = \frac{113}{2.65} = 42.6km/h(1.d.p)$$

Online clips

U151, M515

Pressure

Component Knowledge

- Calculate the pressure exerted on an object using the formula.
- Calculate the force exerted by an object using pressure and area.
- Calculate the area using pressure and force.

Key Vocabulary

Pressure	The effect of a force over an area.		
Force	Force is push or pull. Measures in Newtons (N).		
Area	The amount of space taken up on a flat surface.		
Gravity	The force that attracts a body towards any other physical body that has mass.		
Measure	To find a number that shows the size or amount of something.		

Key Concepts

Whenever an object rests on a solid surface, the surface pushes back against the object, balancing the weight.

The effect that the force of gravity has on the surface depends on the size of the force and the area it is acting over. This effect is called pressure.

Pressure can be increased by increasing the size of the force or decreasing the area.

Examples

A tracked excavator has a weight of 210,000N. The area in contact with the ground is 4m².

$$Pressure = \frac{Force}{Area} = \frac{210,000N}{4m^2} = 52,500 N/m^2$$

A man weighs 880N and his shoes have an area of 500cm². What pressure does he put on the floor?

$$Pressure = \frac{Force}{Area} = \frac{800N}{500cm^2} = 1.6 N/cm^2$$

Online clips

U527, U842

Formulae

$$Pressure = \frac{Force}{Area}$$

$$Area = \frac{Force}{Pressure}$$

 $Force = Pressure \times Area$

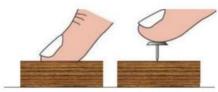
Units

Force is typically measures in Newton's (N)

Sometimes pressure is measures in Pascals (Pa)

- 1 Pa is the same as 1 N/m²
- 1000 Pa equals 1 kilopascal (kPa)

Visual Representation



The drawing pin will sink into the wood as it has a small surface area which **concentrates** the force.

The finder won't sink in as it has a large surface area which **spreads out** the force.

<u>Density, mass</u> and volume

Component Knowledge

- Calculate simple density, mass or volume
- Calculate more complex density, mass or volume
- Combining mass and volume to find density of a compound.

Key Vocabulary

Density	A measure of how tightly the mass of an object is packed into the space it takes		
	up. If an object is heavy and small it will have a higher density		
Mass	The mass of an object is the quantity of matter it contains. It never changes.		
Volume	Volume is defined as the space occupied within the boundaries of an object in		
	three-dimensional space		
Units	The unit of measure used to describe density, mass and volume.		
Compound measurement	A measure made up of two or more measurements (e.g. speed, pressure,		
	density)		

Formulae for density, mass and volume

$$Density = \frac{Mass}{Volume}$$

$$Volume = \frac{Mass}{Density}$$

 $Mass = Density \times Volume$

Calculate density

A solid silver spoon has a mass of 65.1g. The volume of the spoon is 6.2cm³. Calculate the density of silver.

Density =
$$\frac{Mass}{Volume}$$
 Write out the formula

Density =
$$\frac{65.1g}{6.2 cm^3}$$
 Substitute in the values from the question

Density = $10.5 \ g/cm^3$ Remember to include the units in the final answer

Calculate volume

Iron has a density of 7.8g/cm³. A solid iron statue has a mass of 877.5g. Work out the volume of the statue.

Volume =
$$\frac{Mass}{Density}$$
 Write out the formula

Volume =
$$\frac{877.5g}{7.8 \ g/cm^3}$$
 Substitute in the values from the question

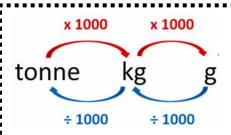
Calculate mass

A piece of plastic has a density of 1.3g/cm³ and a volume of 100cm³. Work out the mass of the piece of plastic.

$$Mass = Density \times Volume$$
 Write out the formula

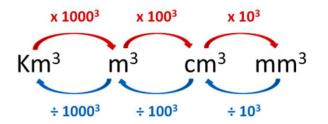
$$Mass = 1.3 \text{g/cm}^3 \times 100 \text{cm}^3$$
 Substitute in the values from the question

$$Mass = 130g$$
 Remember to include the units in the final answer



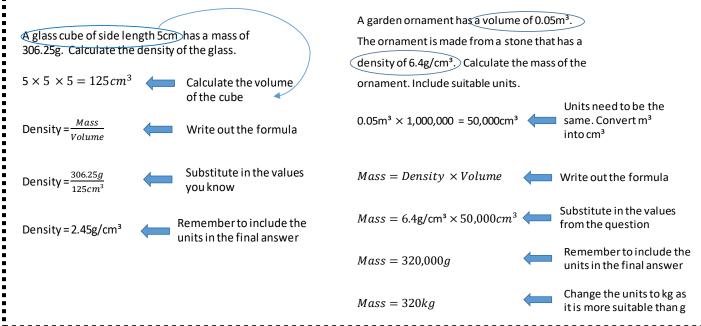
<u>Useful</u>

Conversions



Calculate more complex density, mass or volume

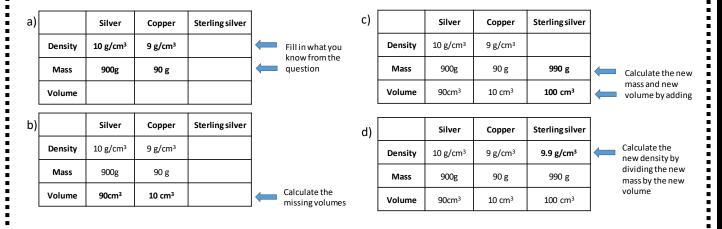
When calculating more complex density, mass or volume you may need to do a calculation before you can then substitute the values from the question into the formula. You made need to calculate the volume of the object first or you may need to change the units of mass or volume so that they are the same.



Combining mass and volume to find new density

When combining mass and volume to find a new combined density you cannot just add the two densities together. You have to find the total mass and the total volume of the new substance and then use these amounts to calculate the density of the compound (Sterling silver in the example below).

Some sterling silver is made with 900 g of silver and 90 g of copper. The density of silver is 10 g/cm³. The density of copper is 9 g/cm³. What is the density of the sterling silver?



Online clip

<u>Simultaneous linear</u>

<u>equations</u>

Component Knowledge

- Solving simultaneous linear equations with a balanced variable by elimination
- Solving simultaneous linear equations where balancing a variable is required
- Form and solve simultaneous equations.

Key Vocabulary

Simultaneous	Two or more equations that are two be solved (if possible) by using the <i>same</i> value for
equations	each variable
Coefficient	The number factor in an algebraic term, multiplied with variables (e.g. 4 in $4x$)
Balancing variables	Equating the coefficients of like terms in different equations by multiplying with suitable
	factors
Eliminating	Reducing the term containing a particular variable in an equation to 0 by
variables	subtracting/adding another equation with the same/opposite term
Substitution	Assigning a value to a variable (e.g. substituting $y = 8$ in $6y$ gives 48)

Solving simultaneous equations – no balancing needed

In the first example, because the two equations have **equal** terms in x – both are 3x – subtracting the equations (remember to subtract both sides) eliminates the x term. The resulting equation has only one unknown, y, and can be solved.

Here the value found for y is **substituted** into the second equation to obtain an equation in terms of x. The first equation could have been used too.

Whichever equation is used for substitution, it is good practice to check the pair of values found in the other equation too, to ensure no mistakes have been made:

$$3 \times 3 + 2 \times 5 = 19$$

In the second example, because the two equations have **opposite** terms in y – one is 2y and the other -2y – adding the equations eliminates the y term.

$$3x + 4y = 29$$

$$- 3x + 2y = 19$$

$$2y = 10$$
$$v = 5$$

Substitute y into either equation to find x.

$$3x + (2 \times 5) = 19$$
$$3x + 10 = 19$$
$$3x = 9$$
$$x = 3$$

$$3x + 2y = 16$$

$$+ 2x - 2y = 4$$

$$5x = 20$$

$$x = 4$$
Substitute x back in to find y.
$$(2 \times 4) - 2y = 4$$

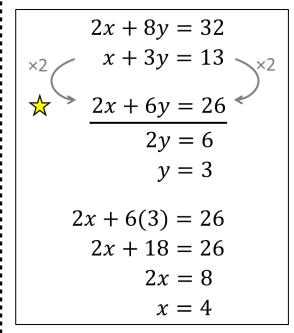
$$8 - 2y = 4$$

$$8 = 4 + 2y$$

$$4 = 2y$$

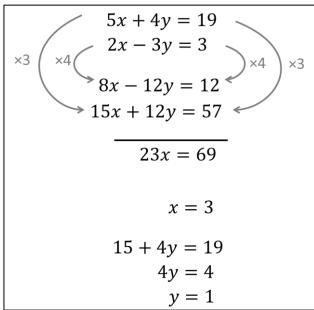
$$2 = y$$

Forming simultaneous equations - balancing a variable



Here neither the x nor the y terms are already balanced. But the x terms can be balanced by multiplying the second equation by 2. (Remember to **multiply both sides** by the factor.)

The modified second equation can then be subtracted from the first, and the subsequent steps are as before.



In this example the y terms can be balanced by multiplying the first equation by 3 and the second by 4, since 12 is the lowest common multiple of the starting coefficients. (Alternatively, we can balance the x terms. What factors would be needed in that case?)

The modified equations are then added – since the y terms have opposite signs – and the following steps are as before.

Forming simultaneous equations to solve a problem

Barry buys 200 pieces of stationery for £76.

Of the 200 pieces of stationery, x of them are rulers that cost 50p each and y of them are pens that cost 20p each.

Find how many rulers and pens Barry buys.

The information in the question can be written as the simultaneous equations

$$x + y = 200$$

50x + 20y = 7600 (amounts are written in pence)

Multiply the first equation by 50 to give 50x + 50y = 10000. The x terms are now balanced, and subtracting the second equation gives 30y = 2400.

Therefore y = 80, and using the first equation x = 120.

Online clips

Factorising Quadratics

Component Knowledge

- Be able to factorise a quadratic of the form $ax^2 + bx + c$ when a = 1
- Be able to factorise a quadratic of the form $ax^2 + bx + c$ when $a \ne 1$
- Factorise a quadratic using the difference of 2 squares
- To use factorising to solve a quadratic equation

Key Vocabulary

Quadratic expression	Equation of the form $ax^2 + bx + c$, where a, b and c are any form of number		
Coefficient	Number of front of a letter, e.g. the coefficient of x^2 in the term $-5x^2$ is -5		
Factor	A common number or letter that will divide into a term		
Factorise	An expression written as a product of it's factors		
Product	Multiplication of two or more values		

Factorising when a = 1

Factorise

$$x^2 + 6x + 8$$

We need two numbers with a product of +8 and a sum of +6,

so we list all of the products and check their sum

$$1 \times 8 = 8$$
 $1 + 8 = 9$
 $2 \times 4 = 8$ $2 + 4 = 6$

This is the correct product/sum pair

We then re-write the quadratic as

$$x^2 + 2x + 4x + 8$$

Factorising each half separately gives

$$x(x+2) + 4(x+2)$$

Taking out the common factor of the bracket then gives

$$(x + 2)(x + 4)$$

Difference of two squares

Look out for this specific case where

$$a^2 - b^2 = (a + b)(a - b)$$

Remember that this won't work if it contains + instead of -.

1) Factorise
$$x^2 - 25 = (x + 5)(x - 5)$$
 or $(x - 5)(x + 5)$

(Expanding gives
$$x^2 - 5x + 5x - 25 = x^2 - 25$$
.)

Sometimes there could be more than one variable (letter) in the expression.

2)
$$9x^2 - y^2 = (3x + y)(3x - y)$$
 or $(3x - y)(3x + y)$

3)
$$25c^2 - 16d^2 = (5c + 4d)(5c - 4d)$$
 or

$$(5c - 4d)(5c + 4d)$$

Factorising when $a \neq 1$

1) Factorise $2x^2 + 11x + 12$.

Here you need two numbers with a product of +24 (from $+2 \times +12$) and a sum of +11.

The two numbers are +3 and +8.

Re-write the expression using your two numbers (in either order) to replace the middle term.

(Note that this time you don't put them straight into brackets!)

$$2x^2 + 3x + 8x + 12$$
 or $2x^2 + 8x + 3x + 12$

Factorise a pair of terms at a time, by taking out common factors. (Make sure the 'introduced brackets' contain identical terms.)

$$x(2x+3) + 4(2x+3)$$
 or $2x(x+4) + 3(x+4)$

Write down the 'repeated' bracket, then construct a second bracket using 'everything else'. You then have:

$$(2x+3)(x+4)$$
 or $(x+4)(2x+3)$

Factorising when a \neq 1 (involving negatives)

Factorise

$$2x^2 - 5x - 12$$

We need two numbers with a product of +24 and a sum of +11,

so we list all of the products and check their sums

$$2 \times 12 = 8$$
 $2 + 12 = 9$, $-2 + 12 = 10$, $2 + (-12) = -10$
 $4 \times 6 = 24$ $4 + 6 = 10$, $-4 + 6 = 2$, $4 + (-6) = -2$
 $1 \times 24 = 24$ $1 + 24 = 25$, $-1 + 24 = 23$, $1 + (-24) = -23$

$$3 \times 8 = 24$$
 $3 + 8 = 11, -3 + 8 = 5, 3 + (-8) = -5$

This is the correct product/sum pair

We then re-write the quadratic as

$$2x^2 - 8x + 3x - 12$$

Factorising each half separately gives

$$2x(x-4) + 3(x-4)$$

Taking out the common factor of the bracket then gives

$$(x-4)(2x+3)$$

Solving Quadratics by factorisation

You must be able to factorise quadratics in order to solve quadratic equations using this method.

Example 1

Solve $x^2 + 6x + 5 = 0$ This factorises into (

This factorises into (x + 5)(x + 1) = 0Each bracket needs to equal 0

$$x + 5 = 0$$
$$x = -5$$

$$x + 1 = 0$$
$$x = -1$$

Example 2

Solve $x^2 + 3x - 10 = 0$ This factorises into (x + 5)(x - 2) = 0

$$x + 5 = 0$$
 or $x - 2 = 0$

$$x = -5$$
 or $x = 2$

Example 3

Solve $x^2 - 6x + 9 = 0$

This factorises into (x - 3)(x - 3) = 0

This equation has repeated roots

 $(x - 3)^2 = 0$

This means there is only one solution, x = 3

Further useful information

Check first that you can expand double brackets (using any appropriate method, such as using a grid or 'FOIL') e.g.

1.
$$(x+1)(x-6) = x^2 - 6x + x - 6$$

2.
$$(2x-3)(x+4) = 2x^2 + 8x - 3x - 12$$

= $2x^2 + 5x - 12$

Avoid being caught out!

- Sometimes a quadratic expression doesn't require double brackets e.g. $2x^2 7x = x(2x 7)$
- Sometimes you can start by taking out a common factor

e.g.
$$2x^2 - 72 = 2(x^2 - 36) = 2(x + 6)(x - 6)$$

Online clips

U178, U858, U228, U960, U963

Column

vectors

Component knowledge

- Understand that vectors are a way of showing the magnitude (size) and direction an object moves (translates).
- Represent vectors
- · Add, subtract and multiply vectors

Key Vocabulary

Vector	A vector has magnitude (size) and direction	
Magnitude	Size of an object- can be a distance or quantity	
Scalar	A scalar on has a magnitude (size) and no direction	
Constant	A variable that remains the same	

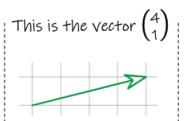
Vectors

Vectors are often written as column vectors

Left or right (3)

Positive Values are right and up. Negative Values are left and down.

This is 3 right and 4 down.



It goes 4 units right and 1 unit up.

Add/subtract vectors:

$$\binom{8}{4} - \binom{3}{6} = \binom{5}{2}$$

Multiply vectors by a constant

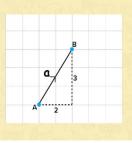
$$3\binom{4}{7} = \binom{12}{21}$$

Column Vectors: Scalar Multiplication

Remember

A vector has a length and a direction

$$\overrightarrow{AB} = \mathbf{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}^{x - 2 \text{ units right}}$$



! Remember

A vector can be multiplied by a scalar to give another vector. The resulting vector will be parallel to the original.

$$\mathbf{a} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \qquad \mathbf{2a} = \begin{pmatrix} 2 \times 3 \\ 2 \times -2 \end{pmatrix} \qquad -\mathbf{a} = \begin{pmatrix} -1 \times 3 \\ -1 \times -2 \end{pmatrix}$$

$$\mathbf{a} = \begin{pmatrix} -1 \times 3 \\ -1 \times -2 \end{pmatrix}$$
If the scalar is negative, the direction of the vector

Online clips
U632, U903, U564

Transformations

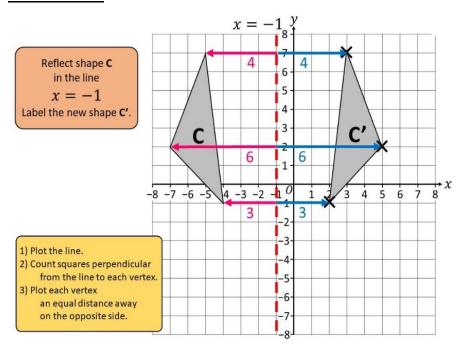
Component Knowledge

- Rotate, reflect and translate a shape.
- Describe a rotation, reflection and translation.

Key Vocabulary

Rotation	The turning of a shape around a fixed point.		
Reflection	An image of a shape as it would be seen in a mirror.		
Perpendicular	At a right angle to a point or line.		
Translation	Moving every point by the same distance in a given direction.		
Vertex	Corner of a shape- where two lines meet in a polygon.		

Reflection:



Information needed to perform a reflection:

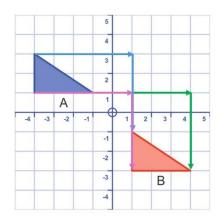
Mirror line.
 This usually an equation e.g.
 y=2, x=-2.

Translation:

Translate shape A by the vector $\begin{pmatrix} 5 \\ -4 \end{pmatrix}$

Move each vertex 5 right.

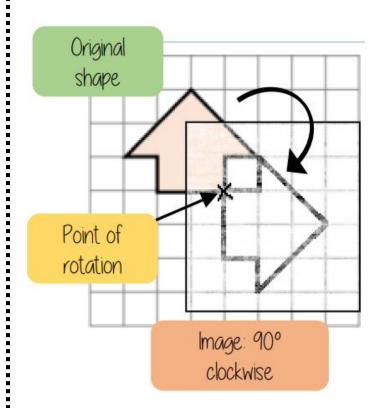
Move each vertex 4 down.



Information needed to perform a reflection:

• Vector. This is usually as a column vector e.g. $\binom{3}{-7}$

Rotation:



I Trace the original shape (mark the point of rotation)

2 Keep the point in the same place and turn the tracing paper

3. Draw the new shape

Clockwise

anti-Clockwise

Information needed to perform a rotation:

- Centre of rotation. This is usually a co-ordinate.
- Direction of rotation. Either Clockwise or anti-clockwise.
- Degrees of rotation. 90' or 180' or 270'
- Tracing paper.

Online clips

M910, M290, M139

Enlargement

Component Knowledge

- Enlarge a rectilinear shape by a given positive scale factor
- Enlarge a rectilinear shape, given a positive integer scale factor and a centre
- Enlarge a rectilinear shape, given a positive fractional scale factor and a centre

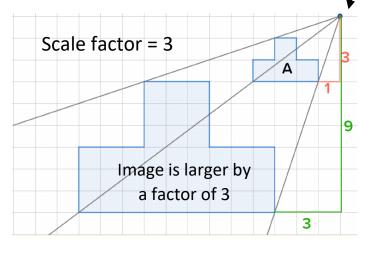
Centre of enlargement

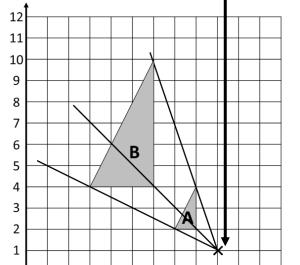
 Enlarge a rectilinear shape, given a negative scale factor and a centre

Key Vocabulary

Enlargement	A transformation of a shape in which all dimensions are multiplied by the same number
Scale factor	The number by which dimensions are multiplied in an enlargement
Centre of	The point from which distances to the <i>object(original shape)</i> and the <i>image (new shape)</i>
enlargement	of an enlargement are measured

Enlarging by a positive *integer* scale factor from a centre





Measure the distance from the centre of enlargement to each vertex of the *object* shape A; the corresponding vertex in the *image* is triple that distance in the **same** direction

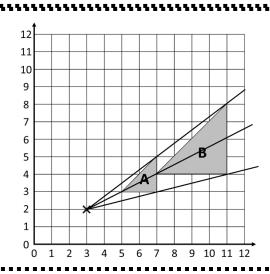
If the object shape is drawn on a coordinate grid, the centre may be specified by coordinates (here the centre is (9,1))

Describing an enlargement

To determine the scale factor, calculate the ratio of the lengths of corresponding sides in the object and its image.

For the centre, draw lines through two pairs of corresponding vertices and find their point of intersection

The enlargement shown here – from A to B – has scale factor 2 and centre (3,2)

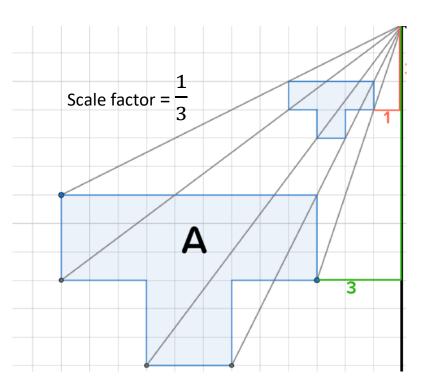


Enlarging by a positive fractional scale factor from a centre

A positive scale factor that is smaller than 1 reduces the dimensions of the object shape.

Here the distance from the centre of enlargement to each vertex of the object shape A is measured and then multiplied by $\frac{1}{3}$ (divided by 3) to find the corresponding vertex in the image (still in the same direction)

Image lengths are a third of the length of the object's (shape has got smaller)

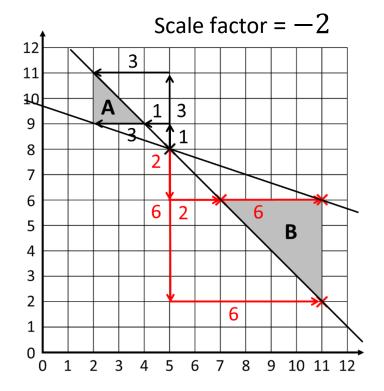


Enlarging by a *negative* **scale factor from a centre**

In enlargement by a *negative* scale factor, the object and its image are at opposite directions from the centre.

Here the distance from the centre of enlargement (5, 8) to each vertex of the object shape A is measured and then multiplied by 2 to find the distance to the corresponding vertex in the image B, but in the opposite direction.

Note that in this case the image is inverted as well as enlarged.



Online clips

U519, U134

Scatter Graphs

Component Knowledge

- Plot points on a scatter graph
- Describe the relationship between variables using a scatter graph
- Identify outliers on a scatter graph
- Draw and interpret a line of best fit

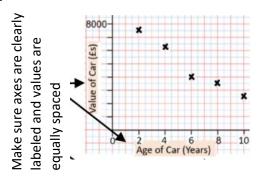
Key Vocabulary

Origin	Where two axes meet on a graph		
Outlier	A point that lies outside the trend of the graph		
Relationship	The link between two variables		
Correlation	The mathematical definition for the type of relationship between two variables		
Line of best fit	A straight line on a graph that represents the data on a scatter graph		
Interpret	Describe what the data is showing		

Plotting a scatter graph

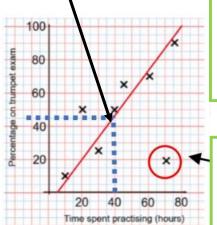
Age of car (years)	2	4	6	8	10
Value of car (£)	7500	6250	4000	3500	2500

The data forms information pairs for the scatter graph that you plot as coordinates e.g. (2, 7500).



The line of best fit

We use the line of best fit to estimate other values.



We cannot use our line of best fit to predict information outside of our data range.

This point is an 'outlier' It doesn't fit the model and stands apart from the rest of the data

Types of Correlation- describes the relationship only.

Negative

Online clips

M769, M596

<u>Venn</u> Diagrams

Component Knowledge

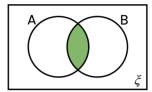
- Complete a Venn Diagram when given a set of data
- Fill in missing values in a Venn Diagram
- Interpret a Venn diagram
- Find probabilities from a Venn Diagram
- Use simple set notation

Key Vocabulary

Set	A collection of "things" (objects or numbers)		
Union	The set made by combining the elements of two sets		
Intersection	The intersection of two sets has only elements common to both sets		
Probability	The change that something happens		
Venn Diagram	A diagram that shows sets which elements belong to which set by drawing regions around them. It is used to represent data that has an overlap.		

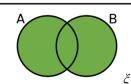
Key Concepts

Venn diagrams show all possible relationships between different sets of data.



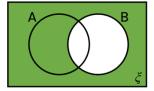
$A \cap B$

The **intersect** of A and B.
The set of elements in **both A and B**.



A U B

The **union** of A and B. The set of elements in **A or B or both.**



B

hunter

The **complement** of B.
The set of elements **not in B**.

Example

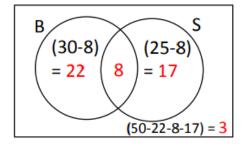
Out of 50 people surveyed:

30 have a brother

25 have a sister

8 have both a brother and a sister

This is what the Venn Diagram for this information would look like



Remember – the people in the intersection are also included in the whole circle so we don't duplicate data.

From the Venn Diagram, we can see that the probability of someone from this group just having a brother is 22/50.

The probability of someone from this group having neither a brother or a sister is 3/50.

The probability of having a brother and a sister,

$$P(A \cap B) = \frac{8}{50}$$

Venn Diagrams with 3 sets

Diagrams can be drawn to show more than 2 sets of data. This is an example of a Venn Diagram containing 3 sets.

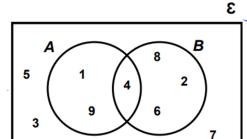
S = {Alex, Hunter, Casey and Drew}

T = {Jade, Casey and Drew}

V = {Drew, Jade and Glen}

Example: Given a set of numbers

E={1,2,3,4,5,6,7,8,9} A={square numbers} B={even numbers}



ε - denotes the universal set. This is the set containing all of the elements being considered.

In set A 'the square numbers' are 1, 4 and 9.

In set B the 'even numbers' are 2, 4, 6, 8.

4 is in both groups so would go in the centre (the intersection)

Outside of the circles are any numbers remaining in §

Online clips

M829, M419, M834