
Topics

- Parts of a circle
- Area/circumfere
- Area of a sector
- Arc length
- Area of compound shapes

What do I need to be able to do?

- Name the parts of a circle
- Find the area/circumference/arc length of a circle
- Find the area of a compound shape

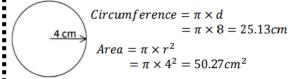
SHAPE

Spring Term

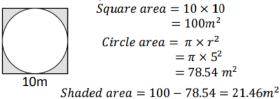
Shape 1

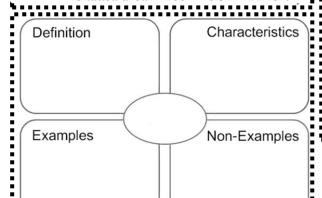
Key Vocabulary

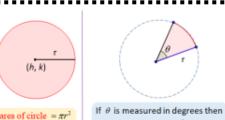
Circle	A 2D shape made by drawing a
	curve that is always the same
	distance from a centre
Radius	The distance from the centre of
	the circle outwards
Diameter	The distance across the circle,
	through the centre
Area	The size of a surface
Circumference	The distance around the circle
Sector	A "pie slice" part of a circle
Segment	The part of a circle made when it
	is cut by a line
Tangent	A line that just touches a curve
	at a point
Chord	A line segment connecting two
	points on a curve
Arc	Part of the circumference of a
	circle
Compound	Made up of more than one
	shape

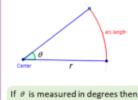

Career Links

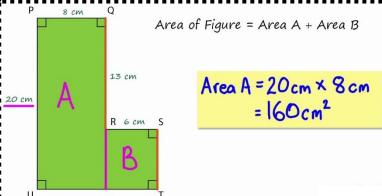
Being able to confidently work with shape is a great skill to have and has lots of links with a number of careers such as:


- Architecture
- Landscaping
- Engineering
- Construction
- Carpenter



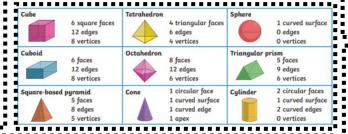



Find shaded area to 2dp.



If θ is measured in degrees then area of sector $=\frac{\theta}{360^{\circ}} \times \pi r^2$

If θ is measured in degrees then are length $=\frac{\theta}{360^{\circ}} \times 2\pi r$


Year 9 F – Knowledge Organiser

Topics

- Volume of prisms
- Surface area of prisms
- Volume/ surface area of a cylinder
- Volume/surface area of a cone
- Volume of a sphere
- Volume of a pyramid
- Surface area of a cone/sphere/pyramid

What do I need to be able to do?

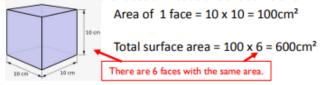
 Find the volume and surface area of different 3D shapes

SHAPE

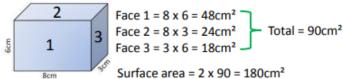
Spring Term

Shape 2

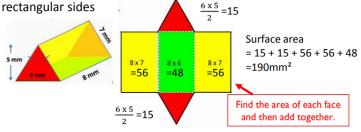
Career Links

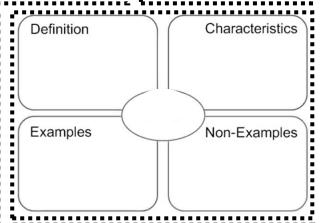

Being able to confidently work with shape is a great skill to have and has lots of links with a number of careers such as:

- Architecture
- Landscaping
- Engineering
- Construction
- Carpenter

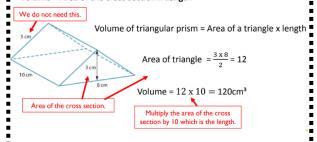

Key Vocabulary

Prism	A solid object with two identical ends and flat sides
Surface area	The total area of the surface of a three dimensional
	object
Volume	The amount of 3 dimensional space something takes up
Cylinder	A solid object two identical flat ends that are circular
	and one curved side
Cone	A solid object that has a circular base joined to a point
	by a curved side
Sphere	A 3D object shaped like a ball
Pyramid	A solid object where the sides are triangles which meet
	at the top and the base is a polygon


Cubes: Find the area of one of the faces and then multiply by 6. This is because all of the faces of a cube are the same size.



Cuboids: They have 3 pairs of faces. We need to find the area of each of the faces we can see, add them together and then double.


Triangular prism: They have a pair of triangular sides and 3

Prism: A prism is a solid object with identical ends and flat faces. The general formula for the volume of a prism is:

Volume = Area of the cross section x Length

Year 9 F – Knowledge Organiser

