Topics

- Calculator skills
- Indices
- Standard form

What do I need to be able to do?

- Use the laws of indices to simplify expressions
- Be able to change between standard form and ordinary numbers

Autumn term

Number 1

Key Vocabulary

Power/Index	Power/index (exponent) of a number says how many times to use the number in a multiplication. It is written as a small number to the right and above the base number		
Base	The number that gets multiplied when using a power		
Standard (index form)	Another name for "scientific notation", where a number is written in two parts: just the digits with the decimal point placed after the first digit followed by x10 to a power that puts the decimal point back where it should be		
Coefficient	A number used to multiply a variable		
Term	A term is either a single number or variable, or numbers and variables multiplied together		
Expression	Numbers, symbols, and operators grouped together to show the value of something		

Career Links

Being able to confidently work with numbers is a great skill to have and has lots of links with a number of careers such as:

- Accountancy/banking
- Insurance
- Engineering
- Construction
- Carpenter

Laws of indices

Multiplication law: When multiplying with the same base (number/letter) we add the powers.

General rule:
$$a^m \times a^n = a^{m+n}$$

$$2^5 \times 2^7 = 2^{5+7} = 2^{12}$$

$$x^3 \times x^8 = x^{3+8} = x^{11}$$

When multiplying the terms we add the powers together.

Division law: When dividing with the same base (number/letter) we subtract the powers.

General rule:
$$a^m \div a^n = a^{m-n}$$

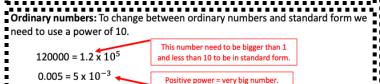
$$2^{14} \div 2^7 = 2^{14-7} = 2^7$$

$$x^{10} \div x^8 = x^{10-8} = x^2$$

When dividing the terms we subtract the powers together.

Brackets law: When raising a power to another power we multiply the powers together.

General rule:
$$(a^m)^n = a^{m \times n}$$


$$(5^4)^2 = 5^{4 \times 2} = 5^8$$

$$(h^9)^3 = h^{9 \times 3} = h^{27}$$

When raising to a power we multiply the powers together.

Definition Characteristics

Examples Non-Examples

Negative power = very small number

Standard form: To change numbers from standard form back to ordinary numbers we multiply by the power of 10.

$$7.32 \times 10^4 = 73200$$
 $2.4 \times 10^{-3} = 0.0024$
The power tells us how many places to move not how many zeros to add.

For 2 x 10^5 you would type

Topics

- **FDP**
- Percentages

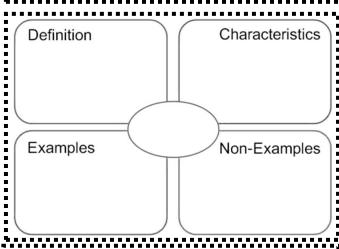
Autumn term

FDP

What do I need to be able to do?

- Order decimals and fractions
- Convert between fractions, decimals and percentages
- Find percentages of amounts
- Find percentage increase and decrease
- Use reverse percentages

NUMBER


Career Links

Being able to confidently work with numbers is a great skill to have and has lots of links with a number of careers such as:

- Accountancy/banki ng
- Insurance
- Engineering
- Construction
- Carpenter

Key Vocabulary

Convert	To change a value or expression from one form to another	
Fraction	How many parts of a whole	
Decimal	Based on 10	
Percentage	Parts per 100	
Equivalent	Having the same value	
Increase	Make something bigger	
Decrease	Make something smaller	
Profit	Income minus expenses	
Interest rate	How much is pad for the use of money, as a percent	

45% of 80:
$$10\% = 80 \div 10 = 8$$
 5% = $8 \div 2 = 4$
 $40\% = 4 \times 8 = 32$ 5% is half of 10%
 $45\% = 40\% + 5\% = 32 + 4 = 36$ so we divide by 2

80% of 120: 80% = 0.80

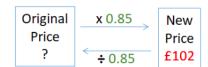
percentage to a decimal and then multiply.

so we divide by 2

Increase: To calculate a percentage increase we calculate the percentage and add the value on to the original amount.

80% of 120 = 0.80 x 120 = 96

Decrease: To calculate a percentage decrease we calculate the percentage and subtract the value off the original amount.


Top tips - To convert:

- Percentages to decimals divide by 100.
- Decimals to percentages multiply by
- 1. Let x = recurring decimal.
 2. Let n = the number of recurring digits.
 3. Multiply the recurring decimal by 10ⁿ.
 4. Subtract (1) from (3) to eliminate the recurring part.
 5. Solve for x, expressing your answer as a fraction in its simplest form. 100.

Recurring Decimals to Fractions

Reverse Percentage

A jacket costs £102 after a discount of 15%. What is the original price of the jacket?

Original price $= £102 \div 0.85 = £120$

F	D	Р
$\frac{1}{100}$	0.01	1%
$\frac{1}{10}$	0.1	10%
<u>1</u>	0.2	20%
$\frac{1}{4}$	0.25	25%
1/2	0.5	50%
$\frac{3}{4}$	0.75	75%

0.7 (one recurring digit) x = 0.7777...10x = 7.777...10x - x = 79x = 7

Year 9 H – Knowledge Organiser

Topics

- Growth and decay
- Compound interest and depreciation

Autumn term

Number 2

Key Vocabulary

Simple interest

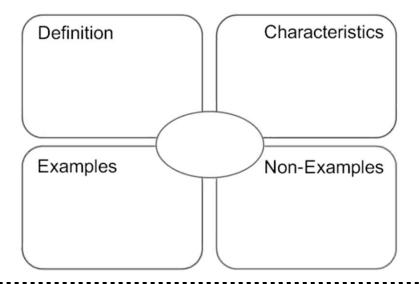
Compound interest

Multiplier

Increase

Decrease

What do I need to be able to do?


- Calculate compound interest
- Understand growth and decay

NUMBER

Career Links

Being able to confidently work with numbers is a great skill to have and has lots of links with a number of careers such as:

- Accountancy/banki
- Insurance
- Engineering
- Construction
- Carpenter

Used to calculate percentages with a calculator

The amount of interest is fixed over a period of time

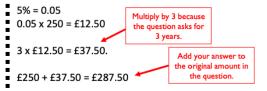
The interest earned over time will continue to increase

When an amount goes up

When an amount goes down

$y = ab^t$

a = initial amount
0 < b < 1 = exponential decay
b > 1 exponential growth
t = time period


$$y = a(1+r)^t$$

a = initial amount
 r = growth rate per time period
 t = time period

Simple interest

To calculate simple interest we start by calculating the percentage and multiplying it by the period of time.

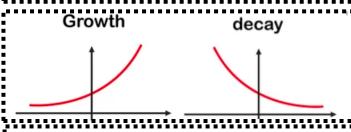
Example: £250 is in a bank account which is paying 5% simple interest per year. How much will be in the bank account at the end of 3 years?

Compound interest

To calculate compound interest we use powers as the amount changes at the end of each year.

Example: £250 is in a bank account which is paying 4% compound interest per year. How much will be in the bank account at the end of 5 years?

Interest means an increase


4% increase = 1.04

so 100% + 4% = 104% which as a multiplier is 1.04

1.04⁵ x 250 = £304.16

Power of 5 because the

This is the final answer

$$12\% = \frac{12}{100} = 0.12$$

Year 9 H - Knowledge Organiser